
D-FA92 584 INTEGRATED CLASS STRUCTURES FOR IMAGE PATTERN I/
RECOGNITION AND COMPUTER GRAPHICS(U) NORTH CAROLINA
UNIV AT CHAPEL HILL DEPT OF COMPUTER SCIENCE

UNCLASSIFIED J M COGGINS NOV 87 NOSS4-86-K-8688 F/G 12/5 Nt

01EEMIhEEI

-44.

11111 I0 :: ~ 1III1 *

- ww

.4A MEE II IIIIIi

L- i (0 N rr- r wyi- w

Proceedings of the First USENIX C++ Workshop, Santa Fe, NM, November 8-10, 1987,
pages 240-245.

i Integrated Class Structures for
0Image Pattern Recognition and Computer Graphics

James M. Coggins DT
Computer Science Department E__. L - i

, "" University of North Carolina APR 1 5 1988
I Chapel Hill, NC 27599-3175

Introduction N
Research efforts in image pattern recognition and computer graphics face
two kinds of software problems. First is the intrinsic complexity of the
algorithms developed in the course of the research. Second is the design
and construction of the researcher's software toolbox including
fundamental operations, standards for data storage and communication,
and interfaces to rapidly changing sets of display and interaction devices.

* The complexity problem is intrinsic to the subject matter and objectives,
and it is the proper domain of the researcher. 'The second kind of problem
is incidental to the research objectives and can be addressed by adoption
of modern software development tools and disciplines, including
object-oriented design for code and hypertext structures for
documentation.

.,This paper describes several techniques we have developed while designing
an integrated object-oriented software toolbox for image pattern
recognition and interactive computer graphics research. Design criteria
for the system include (1) pervasive integration of constructs, (2)
maximum flexibility for researchers using the system, (3) minimum user
effort to invoke the facilities, and (4) purity of the object-oriented design. --
We will describe in this paper techniques we have developed for managing
massive data structures, providing type-independence at the user level,
encapsulating device dependencies, processes, and class interfaces, and
decomposing the required software system while maintaining integration
of concepts.

Managing Massive Data Structures
. The kinds of structures we manipulate (images, pattern matrices,

graphical models) often have large or very large memory requirements.
0We do not want to reallocate, copy, and destroy these large structures in
s each function call and function value return. Instead, we implement largeb structures using a header object that stores descriptive data about the

object along with a pointer to a storage object that contains the data.
The header class image, for example, contains the image size and shape, its

disk file name, history, and other data, plus a pointer to an object of class
u buffer which contains the pixel data for the image. Class image

understands messages that will be forwarded to the buffer object for
processing. For example, image image: :operator+=(image&) must be
defined, but its action is simply to invoke the b u f f e r method v o i (j
buffer: :operator+=(buffer*) . Objects of class image are small, so they
may be copied, allocated, and destroyed as needed with negligible
performance penalty. We must be careful, however, in the constructors and
destructor of image to avoid repeated allocation, copying and deallocation
of large buffer objects. This means that the image: :image(image&) and
image: :operator=(image&) messages must copy the buffer pointer of the
source image and not allocate a new buffer. In order to prevent the
destructor -image () from deallocating the buffer while it is still being
used, we place a reference count in the buffer object and delete the buffer
only if the reference count is zero after decrementing. This mechanism
also prevents the large buffer objects from being left in the heap as
garbage, which would soon result in exhaustion of virtual memory. We are
planning to use the header class/storage class implementation for all of
our large structures such as pattern matrices and some graphical models.

Type independence
The separation of header and storage classes also makes possible type
independence at the user level. Storage types for images include byte,
color (4 bytes for RGBS), integer (short), real (float), and complex (a pair
of floats). Objects of class image are manipulated as desired, independent
of the storage type. Messages involving the pixel data are passed on to the
image's buffer object. The buffer class contains virtual function
declarations for the suite of operations affecting the pixel data. The real
work is performed in subclasses of buffer that are type-specific:
byte_buffer, color-buffer, int buffer, real buffer, and
complexbuffer. Necessary coercions are provided between the buffer
subclasses. When more than one coercion is possible (complex-to-real can
be performed by real part, imaginary part, magnitude, or phase), a default
is assigned and an optional parameter can be used to override the default.

Since the image objects are, in effect, annotated pointers to buffers, image

objects can be manipulated naturally in expressions such as
result=iml+im2*2 .0; without the distractions of creating and
dereferencing pointers.

The overhead of this extra level of indirectness is negligible because by
assumption we are manipulating large objects. Since we get both
type-independent manipulations and a reasonable method for managing the
large memory requirements, we do not begrudge the overhead cost.

Encapsulating device dependencies
A serious problem in a high-technology lab such as ours is keeping the

software base current and consistent with the available hardware
capabilities. We have experienced a phenomenon we call "hardware
indigestion" in which we have difficulty incorporating new hardware into
existing projects because of incompatibilities between the various devices
and the device-specific nature of the controlling software supplied by the
vendors. Of these issues, the software incompatibility is the more serious
problem. Advances in graphics and imaging devices have usually involved
speed and resolution enhancements, not entirely new functionality.
Accessing that functionality is difficult because the vendor's software
involves intricate code that is optimized in some sense for the device's
capabilities and that is not amenable to incorporation into a uniform
interface.

We have worked on three kinds of device encapsulations. DicK: file
manipulations are supported by a class diskfile that handles basic disk

'. operations such as open, close, read, write, and seek. These operations are
then invoked by derived classes that "know" the structures of particular

-:. kinds of disk files such as imagefile, polyfile, and patternfile. New
kinds of file structures can be added as derived classes of disk f ile

without changing any of the existing code.

A Another kind of device encapsulation we have developed involves analog
input devices such as knobs, joysticks, and sliders. The key to the design
of these classes was recognizing that the only differences between them
from the system's viewpoint are the name of the device handler and the
number of bytes expected from the device in a single read operation.
Operations provided by the abstract superclass include poll to force a
read of the device and int rawdata (int) to obtain one of the values
provided by the A/D converter. A uniform user interface is provided by
adopting the convention that the device-specific classes convert the
integer raw data value to a double between 0.0 and 1.0. Now the roles of
the devices can be interchanged by simply declaring the device object to be
of a different device subclass. Device-specific interfaces are also

0available; a 2-D joystick can return a point, and a 3-D velocity joystick
can return a vector.

The third kind of device encapsulation involves display devices. We

decided to make the unit of encapsulation be the viewing surface, so on
window-oriented systems, the display object created is a window. Thus,
several display objects may be active at once on a device. Several basic
capabilities are defined in the abstract superclass including clearing the od

display, drawing lines, writing text, rendering polygons, and displaying or

images. We are still debating how the enhanced capabilities of some
devices may be made available within this framework, especially when the
architecture of the device requires the data to be prepared differently for
display processing.

Process encapsulations
Since our research involves development of new algorithms for imaging
and graphics problems, encapsulation of these frequently-changing
processes is essential to our research software environment. We have
used a technique called process encapsulation to simplify the use and
invocation of the processes based on the dictum "Encapsulate most deeply
that which is most likely to change." Conceptually, a process
encapsulation creates an object that we call an enzyme or a catalytic
object, whose purpose is to mediate interactions among other objects. In a
process encapsulation, a class structure is defined for the process type, a
renderer or a classifier, for example, that specifies the minimum
functionality and parameters of such a process. Then specific algorithms
are defined as derived classes with their own parameters as required. To
use the process, we create an object of the desired subclass, connect it to
other objects and supply the parameters it needs, and send it a "begin"

message. The input objects and parameter values can be supplied in three
ways: by arguments to the constructor, by assignment in separate
messages to the object, and by arguments to the "begin" message. This
design allows the user to customize the process in a separate code
segment from that where the process is invoked, leading to very clean code
for the basic algorithm that invokes the process. The inheritance of
fundamental operations and structures from the process' base class
contributes to rapid development and evaluation of algorithm
modifications and parameters.

Class Interface Encapsulations
The definition of standard process interfaces is facilitated by classes that
store intermediate results in a standardized form (or a set of agreed-upon
forms). Some details of this design innovation are still under
development, but a typical example occurs in a graphics pipeline where
various kinds of object models must be converted into "rendering

0 primitives" that the display devices understand and can process. By
adopting a standard set of rendering primitives, developers of process
encapsulations for renderers and developers of display device
encapsulations are insulated from each other's internal data structures and
processing requirements. Development of renderers can proceed in a
device-independent fashion and augmentations to the set of rendering
primitives are explicitly noted and handled by all device encapsulations.
By standardizing interface classes, most of our graphics research efforts
can begin to share code. We find that research that is advancing the state

0. of the art sometimes still must diverge from the standards either in order
to optimize performance or in order to explore new paradigms that are
beyond the state of the art. An example of the former case is real-time
interactive graphics using customized parallel architectures requiring a
different structure in the graphics pipeline. An example of the latter case
is research in texture mapping in which the graphics pipeline is modified
to accomodate an entirely new kind of rendering.

In order to accomodate these research efforts, our graphics class
structures are designed for ease of use by system developers and has been
criticized for being less than optimal for users. This is an explicit design
tradeoff that we have accepted in order to provide flexibility and control
at the expense of some ease of use and fidelity to user-level conceptual
structures.

Separation of Concerns
The interface classes described above are used to implement a separation
of concerns that has guided the design of our basic class structures. We
will illustrate its effect with an example from our image processing
library.

In our first implementation of class image, we included messages such as
load, save, and display. The resulting structure had several problems.
First, putting everything into image made the code too large. Second, the
code for image had an unpleasing asymmetry. The code for the load, save,
and display messages overwhelmed the code for the numerous image
processing messages, most of which were less than ten lines each. Third,
the intricate code we worked out for handling disk I/O was unusable by any
other classes, and the display operation was useless on any but the device
we defined it for.

The next incarnation of image separated the concerns of storage,
processing, and interaction devices into different classes. Storage was
handled by a class, diskfile, that encapsulates all low-level disk
operations but without any knowledge of the semantics of the file being
manipulated. A subclass imagefile directs the decoding and
interpretation of the disk data. The image class retains the processing
operations. Display of images was moved out to a display_device class
with subclasses for the various devices available in our lab. Thus, an
"image" became a "rendering primitive" that all display devices are
expected to process in some reasonable manner.

The principle of separation of concerns is primarily an implementation
principle that helps to provide the control and flexibility that we need in
our research environment, but it sometimes works against the kind of

1 1"

% user-level ease-of-use and fidelity to conceptual structures that is a
hallmark of Smalltalk. We are still investigating whether and how a
user-level class structure might be imposed atop our implementation
structures without redesign for each alternative implementation of a
graphics or imaging pipeline.

Conclusion: Is C++ Really the Right Tool?
Object-Oriented Programming is a code packaging discipline that imposes
a reasonable structure on large bodies of code, with additional benefits of
code sharing within each class hierarchies and effective conceptual
metaphors for talking and thinking about programs. Object-oriented
programming provides just the kind of discipline and structure that we
need as the size and complexity of our software base increases beyond a
level where a single person can maintain, control, and understand it. Since
we are an established UNIX environment, a C derivative makes sense in
view of our large installed base of C code and our need for implementation
control in order to support real-time operations and efficient handling of
large storage structures. These properties of our environment and
objectives make C++ a reasonable language for our software development
efforts.

We eagerly await the development of a symbolic debugger for C++ and some
relief to the problem of proliferating header files and the compile-time
overhead they require. A precompilation of header files into an
"environment file" similar to those available for DEC's VMS Pascal would
be, for us, an ideal solution to the problem.

Our software development efforts are proceeding on two levels. Low-level
encapsulations of basic data structures are being debated and sometimes
shared among implementers. High-level architectures for large structures
such as graphics and imaging pipelines are also being designed and debated.
We believe that the largest benefit will be obtained from the high-level
architectures and the standards decided at that level, but the low-level
encapsulations are more immediately useful to implementers who already
have their own versions of the major processes in the laboratory. Whether
anticipated revisions to C++ such as parameterized types impact the
effectiveness or generality of these design activities remains to be seen.

Acknowledgements
This research was supported in part by ONR contract N00014-86-K-0680.
Students Muru Palaniappan, John Rohlf, and Brice Tebbs have made
significant contributions to the design and implementation of the
integrated class structures. About a dozen other faculty and student
researchers in our department's Graphics and Imaging Cluster have
provided valuable advice and criticism.

SG

L) wIIIIII

b0
D

J ' II t68IIII 1- lmlml i
I t 6 : S 0 0 1

